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Real Time Cryptanalysis of A5/1 on a PC 

Alex Biryukov * Adi Shamir ** David Wagner ***

Abstract. A5/1 is the strong version of the encryption algorithm used by about 130 
million GSM customers in Europe to protect the over-the-air privacy of their cellular 
voice and data communication. The best published attacks against it require between 
240 and 245 steps. This level of security makes it vulnerable to hardware-based 
attacks by large organizations, but not to software-based attacks on multiple targets 
by hackers. 

In this paper we describe new attacks on A5/1, which are based on subtle flaws in the 
tap structure of the registers, their noninvertible clocking mechanism, and their 
frequent resets. After a 248 parallelizable data preparation stage (which has to be 
carried out only once), the actual attacks can be carried out in real time on a single 
PC. 

The first attack requires the output of the A5/1 algorithm during the first two minutes 
of the conversation, and computes the key in about one second. The second attack 
requires the output of the A5/1 algorithm during about two seconds of the 
conversation, and computes the key in several minutes. The two attacks are related, 
but use diffrent types of time-memory tradeoff. The attacks were verified with actual 
implementations, except for the preprocessing stage which was extensively sampled 
rather than completely executed. 

REMARK: We based our attack on the version of the algorithm which was derived 
by reverse engineering an actual GSM telephone and published at 
http://www.scard.org. We would like to thank the GSM organization for graciously 
confiming to us the correctness of this unofficial description. In addition, we would 
like to stress that this paper considers the narrow issue of the cryptographic strength 
of A5/1, and not the broader issue of the practical security of fielded GSM systems, 
about which we make no claims. 

* Computer Science department, The Weizmann Institute, Rehovot 76100, Israel. 
** Computer Science department, The Weizmann Institute, Rehovot 76100, Israel. 
*** Computer Science department, University of California, Berkeley CA 94720, USA. 

1 Introduction 
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The over-the-air privacy of GSM telephone conversations is protected by the A5 stream cipher. 
This algorithm has two main variants: The stronger A5/1 version is used by about 130 million 
customers in Europe, while the weaker A5/2 version is used by another 100 million customers in 
other markets. The approximate design of A5/1 was leaked in 1994, and the exact design of both 
A5/1 and A5/2 was reverse engineered by Briceno from an actual GSM telephone in 1999 (see 
[3]). 

In this paper we develop two new cryptanalytic attacks on A5/1, in which a single PC can extract 
the conversation key in real time from a small amount of generated output. The attacks are related, 
but each one of them optimizes a different parameter: The first attack (called the biased birthday 
attack) requires two minutes of data and one second of processing time, whereas the second 
attack (called the the random subgraph attack) requires two seconds of data and several 
minutes of processing time. There are many possible choices of tradeo parameters in these attacks, 
and three of them are summarized in Table 1. 

Table 1. Three possible tradeoff points in the attacks on A5/1. 

Many of the ideas in these two new attacks are applicable to other stream ciphers as well, and 
define new quantifiable measures of security. 

The paper is organized in the following way: Section 2 contains a full description of the A5/1 
algorithm. Previous attacks on A5/1 are surveyed in Section 3, and an informal description of the 
new attacks is contained in Section 4. Finally, Section 5 contains various implementation details 
and an analysis of the expected success rate of the attacks, based on large scale sampling with 
actual implementations. 

2 Description of the A5/1 stream cipher 

A GSM conversation is sent as a sequence of frames every 4.6 millisecond. Each frame contains 
114 bits representing the digitized A to B communication, and 114 bits representing the digitized 
B to A communication. Each conversation can be encrypted by a new session key K. For each 
frame, K is mixed with a publicly known frame counter Fn , and the result serves as the initial 
state of a generator which produces 228 pseudo random bits. These bits are XOR'ed by the two 
parties with the 114+114 bits of the plaintext to produce the 114+114 bits of the ciphertext. 

A5/1 is built from three short linear feedback shift registers (LFSR) of lengths 19, 22, and 23 bits, 
which are denoted by R1; R2 and R3 respectively. The rightmost bit in each register is labelled as 
bit zero. The taps of R1 are at bit positions 13,16,17,18; the taps of R2 are at bit positions 20,21; 
and the taps of R3 are at bit positions 7, 20,21,22 (see Figure 1). When a register is clocked, its 
taps are XORed together, and the result is stored in the rightmost bit of the left-shifted register. 
The three registers are maximal length LFSR's with periods 219 -1, 222 - 1, and 223 -1, 
respectively. They are clocked in a stop/go fashion using the following majority rule: Each 

Attack Type Preprocessing
steps

Available
data

Number of
73GB disks

Attack time

Biased Birthday attack (1) 242 2 minutes 4 1 second

Biased Birthday attack (2) 248 2 minutes 2 1 second

Random Subgraph attack 248 2 seconds 4 minutes
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register has a single "clocking" tap (bit 8 for R1, bit 10 for R2, and bit 10 for for R3); each clock 
cycle, the majority function of the clocking taps is calculated and only those registers whose 
clocking taps agree with the majority bit are actually clocked. Note that at each step either two or 
three registers are clocked, and that each register moves with probability 3/4 and stops with 
probability 1/4. 

The process of generating pseudo random bits from the session key K and the frame counter Fn is 

carried out in four steps: 

-- The three registers are zeroed, and then clocked for 64 cycles (ignoring the stop/go 
clock control). During this period each bit of K (from lsb to msb) is XOR'ed in 
parallel into the lsb's of the three registers. 

-- The three registers are clocked for 22 additional cycles (ignoring the stop/go clock 
control). During this period the successive bits of Fn (from lsb to msb) are again 

XOR'ed in parallel into the lsb's of the three registers. The contents of the three 
registers at the end of this step is called the initial state of the frame. 

-- The three registers are clocked for 100 additional clock cycles with the stop/go 
clock control but without producing any outputs. 

-- The three registers are clocked for 228 additional clock cycles with the stop/go 
clock control in order to produce the 228 output bits. At each clock cycle, one output 
bit is produced as the XOR of the msb's of the three registers. 

3 Previous attacks 

The attacker is assumed to know some pseudo random bits generated by A5/1 in some of the 
frames. This is the standard assumption in the cryptanalysis of stream ciphers, and we do not 
consider in this paper the crucial issue of how one can obtain these bits in fielded GSM systems. 
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For the sake of simplicity, we assume that the attacker has complete knowledge of the outputs of 
the A5/1 algorithm during some initial period of the conversation, and his goal is to find the key 
in order to decrypt the remaining part of the conversation. Since GSM telephones send a new 
frame every 4.6 milliseconds, each second of the conversation contains about 28 frames. 

At the rump session of Crypto 99, Ian Goldberg and David Wagner announced an attack on A5/2 
which requires very few pseudo random bits and just O(216) steps. This demonstrated that the 
\export version" A5/2 is totally insecure. 

The security of the A5/1 encryption algorithm was analyzed in several papers. Some of them are 
based on the early imprecise description of this algorithm, and thus their details have to be slightly 
modified. The known attacks can be summarized in the following way: 

-- Briceno[3] found out that in all the deployed versions of the A5/1 algorithm, the 10 
least signi cant of the 64 key bits were always set to zero. The complexity of 
exhaustive search is thus reduced to O(2 54 ).4 

-- Anderson and Roe[1] proposed an attack based on guessing the 41 bits in the 
shorter R1 and R2 registers, and deriving the 23 bits of the longer R3 register from the 

output. However, they occasionally have to guess additional bits to determine the 
majority-based clocking sequence, and thus the total complexity of the attack is about 
O(245). Assuming that a standard PC can test ten million guesses per second, this 
attack needs more than a month to find one key. 

-- Golic[4] described an improved attack which requires O(240) steps. However, each 
operation in this attack is much more complicated, since it is based on the solution of 
a system of linear equations. In practice, this algorithm is not likely to be faster than 
the previous attack on a PC. 

-- Golic[4] describes a general time-memory tradeo attack on stream ciphers (which 
was independently discovered by Babbage [2] two years earlier), and concludes that it 
is possible to find the A5/1 key in 2 22 probes into random locations in a 
precomputed table with 242 128 bit entries. Since such a table requires a 64 terabyte 
hard disk, the space requirement is unrealistic. Alternatively, it is possible to reduce 
the space requirement to 862 gigabytes, but then the number of probes increases to O
(228). Since random access to the fastest commercially available PC disks requires 
about 6 milliseconds, the total probing time is almost three weeks. In addition, this 
tradeoff point can only be used to attack GSM phone conversations which last more 
than  3 hours, which again makes it unrealistic. 

___________________ 

4 Our new attack is not based on this assumption, and is thus applicable to A5/1 
implementations with full 64 bit keys. It is an interesting open problem whether we can 
speed it up by assuming that 10 key bits are zero. 

4 Informal Description of the New Attacks 

We start with an executive summary of the key ideas of the two attacks. More technical 
descriptions of the various steps will be provided in the next section. 
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Key idea 1: Use the Golic time-memory tradeoff. The starting point for the new attacks is the 
time-memory tradeoff described in Golic[3], which is applicable to any cryptosystem with a 
relatively small number of internal states. A5/1 has this weakness, since it has n = 264 states 
defined by the 19+22+23 = 64 bits in its three shift registers. The basic idea of the Golic time-
memory tradeoff is to keep a large set A of precomputed states on a hard disk, and to consider the 
large set B of states through which the algorithm progresses during the actual generation of output 
bits. Any intersection between A and B will enable us to  identify an actual state of the algorithm 
from stored information. 

Key idea 2: Identify states by prefixes of their output sequences. Each state defines an infinite 
sequence of output bits produced when we start clocking the algorithm from that state. In the 
other direction, states are usually uniquely defined by the first log(n) bits in their output 
sequences, and thus we can look for equality between unknown states by comparing such prefixes 
of their output sequences. During precomputation, pick a subset A of states, compute their output 
prefixes, and store the (prefix, state) pairs sorted into increasing prefix values. Given actual 
outputs of the A5/1 algorithm, extract all their (partially overlapping) prefixes, and define B as the 
set of their corresponding (unknown) states. Searching for common states in A and B can be 
efficiently done by probing the sorted data A on the hard disk with prefix queries from B. 

Key idea 3: A5/1 can be efficiently inverted. As observed by Golic, the state transition function 
of A5/1 is not uniquely invertible: The majority clock control rule implies that up to 4 states can 
converge to a common state in one clock cycle, and some states have no predecessors. We can run 
A5/1 backwards by exploring the tree of possible predecessor states, and backtracking from dead 
ends. The average number of predecessors of each node is 1, and thus the expected number of 
vertices in the first k levels of each tree grows only linearly in k (see[3]). As a result, if we find a 
common state in the disk and data, we can obtain a small number of candidates for the initial state 
of the frame. The weakness we exploit here is that due to the frequent reinitializations there is a 
very short distance from intermediate states to initial states. 

Key idea 4: The key can be extracted from the initial state of any frame. Here we exploit the 
weakness of the A5/1 key setup routine. Assume that we know the state of A5/1 immediately after 
the key and frame counter were used, and before the 100 mixing steps. By running backwards, we 
can eliminate the effect of the known frame counter in a unique way, and obtain 64 linear 
combinations of the 64 key bits. Since the tree exploration may suggest several keys, we can 
choose the correct one by mixing it with the next frame counter, running A5/1 forward for more 
than 100 steps, and comparing the results with the actual data in the next frame. 

Key idea 5: The Golic attack on A5/1 is marginally impractical. By the well known birthday 
paradox, A and B are likely to have a common state when their sizes a and b satisfy a * b approx = 
n. We would like a to be bounded by the size of commercially available PC hard disks, and b to 
be bounded by the number of overlapping prefixes in a typical GSM telephone conversation. 
Reasonable bounds on these values (justified later in this paper) are a approx = 235 and b approx 
= 222. Their product is 257, which is about 100 times smaller than n = 264. To make the 
intersection likely, we either have to increase the storage requirement from 150 gigabytes to 15 
terabytes, or to increase the length of the conversation from two minutes to three hours. Neither 
approach seems to be practical, but the gap is not huge and a relatively modest improvement by 
two orders of magnitude is all we need to make it practical. 

Key idea 6: Use special states. An important consideration in implementing time-memory 
tradeoff attacks is that access to disk is about a million times slower than a computational step, 
and thus it is crucial to minimize the number of times we look for data on the hard disk. An old 
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idea due to Ron Rivest is to keep on the disk only special states which are guaranteed to produce 
output bits starting with a particular pattern alpha of length k, and to access the disk only when we 
encounter such a prefix in the data. This reduces the number b of disk probes by a factor of about 
2k . The number of points a we have to memorize remains unchanged, since in the formula a * b 
approx = n both b and n are reduced by the same factor 2k . The downside is that we have to work 
2k times harder during the preprocessing stage, since only 2-k the preprocessing time by a factor of 
about 64,000, which makes it impractically long. 

Key idea 7: Special states can be efficiently sampled in A5/1. A major weakness of A5/1 which 
we exploit in both attacks is that it is easy  to generate all the states which produce output 
sequences that start with a particular k-bit pattern alpha with k = 16 without trying and discarding 
other states. This is due to a poor choice of the clocking taps, which makes the register bits that 
affect the clock control and the register bits that affect the output unrelated for about 16 clock 
cycles, so we can choose them independently. This easy access to special states does not happen 
in good block ciphers, but can happen in stream ciphers due to their simpler transition functions. 
In fact, the maximal value of k for which special states can be sampled without trial and error can 
serve as a new security measure for stream ciphers, which we call its sampling resistance. As 
demonstrated in this paper, high values of k can have a big impact on the efficiency of time-
memory tradeoff attacks on such cryptosystems. 

Key idea 8: Use biased birthday attacks. The main idea of the first attack is to consider sets A 
and B which are not chosen with uniform probability distribution among all the possible states. 
Assume that each state s is chosen for A with probability PA (s), and is chosen for B with 

probability PB (s). If the means of these probability distributions are a/n and b/n, respectively, 

then the expected size of A is a, and the expected size of B is b. 

The birthday threshold happens when Sigmas PA (s) PB (s) approx = 1. For independent uniform 

distributions, this evaluates to the standard condition a * b approx = n. However, in the new 
attack we choose states for the disk and states in the data with two non-uniform probability 
distributions which have strong positive correlation. This makes our time memory tradeoff much 
more efficient than the one used by Golic. This is made possible by the fact that in A5/1, the 
initial state of each new frame is rerandomized very frequently with different frame counters. 

Key idea 9: Use Hellman's time-memory tradeoff on a subgraph of special states. The main 
idea of the second attack (called the random subgraph attack) is to make most of the special states 
accessible by simple computations from the subset of special states which are actually stored in 
the hard disk. The first occurrence of a special state in the data is likely to happen in the first two 
seconds of the conversation, and this single occurrence sufacces in order to locate a related special 
state in the disk even though we are well below the threshold of either the normal or the biased 
birthday attack. The attack is based on a new function f which maps one special state into another 
special state in an easily computable way. This f can be viewed as a random function over the 
subspace of 248 special states, and thus we can use Hellman's time-memory tradeoff [4] in order 
to invert it efficiently. The inverse function enables us to compute special states from output 
prefixes even when they are not actually stored on the hard disk, with various combinations of 
time T and memory M satisfying M square root T = 248. If we choose M = 236 , we get T = 224 , 
and thus we can carry out the attack in a few minutes, after a 248 preprocessing stage which 
explores the structure of this function f. 

Key idea 10: A5/1 is very efficient on a PC. The A5/1 algorithm was designed to be efficient in 
hardware, and its straightforward software implementation is quite slow. To execute the 
preprocessing stage, we have to run it on a distributed network of PC's up to 248 times, and thus 
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we need an extremely efficient way to compute the effect of one clock cycle on the three registers. 

We exploit the following weakness in the design of A5/1: Each one of the three shift registers is 
so small that we can precompute all its possible states, and keep them in RAM as three cyclic 
arrays, where successive locations in each array represent successive states of the corresponding 
shift register. In fact, we don't have to keep the full states in the arrays, since the only information 
we have to know about a state is its clocking tap and its output tap. A state can thus be viewed as 
a triplet of indices (i; j; k) into three large single bit arrays (see Figure 2). A1 (i); A2 (j); A3 (k) are 

the clocking taps of the current state, and A1 (i - 11), A2 (j - 12), A3 (k - 13) are the output taps of 

the current state (since these are the corresponding delays in the movement of clocking taps to 
output taps when each one of the three registers is clocked). Since there is no mixing of the values 
of the three registers, their only interaction is in determining which of the three indices should be 
incremented by 1. This can be determined by a precomputed table with three input bits (the 
clocking taps) and three output bits (the increments of the three registers). When we clock A5/1 in 
our software implementation, we don't shift registers or compute feedbacks - we just add a 0/1 
vector to the current triplet of indices. A typical two dimensional variant of such movement 
vectors in triplet space is described in Figure 3. Note the local tree structure determined by the 
deterministic forward evaluation and the nondeterministic backward exploration in this triplet 
representation. 

Since the increment table is so small, we can expand the A tables from bits to bytes, and use a 
larger precomputed table with 224 entries, whose inputs are the three bytes to the right of the 
clocking taps in the three registers, and outputs are the three increments to the indices which allow 
us to jump directly to the state which is 8 clock cycles away. The total amount of RAM needed for 
the state arrays and precomputed movement tables is less than 128 MB, and the total cost of 
advancing the three registers for 8 clock cycles is one table lookup and three integer additions! A 
similar table lookup technique can be used to compute in a single step output bytes instead of 
output bits, and to speed up the process of running A5/1 backwards. 

5 Detailed Description of the Attacks 

In this section we fill in the missing details, and analyse the success rate of the new attacks. 

5.1 Efficient Sampling of Special States 

Let alpha be any 16 bit pattern of bits. To simplify the analysis, we prefer to use an alpha which 
does not coincide with shifted versions of itself (such as alpha = 1000...0) since this makes it very 
unlikely that a single 228-bit frame contains more than one occurrence of alpha. 

The total number of states which generate an output prefix of alpha is about 264 * 2-16 = 248. We 
would like to generate all of them in a (barely doable) 248 preprocessing stage, without trying all 
the 264 possible states and discarding the vast majority which fail the test. The low sampling 
resistance of A5/1 is made possible by several flaws in its design, which are exploited in the 
following algorithm: 

-- Pick an arbitrary 19-bit value for the shortest register R1. Pick arbitrary values for 
the rightmost 11 bits in R2 and R3 which will enter the clock control taps in the next 
few cycles. We can thus define 219+11+11 = 241 partial states. 

-- For each partial state we can uniquely determine the clock control of the three 
registers for the next few cycles, and thus determine the identity of the bits that enter 
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their msb's and affect the output. 

-- Due to the majority clock control, at least one of R2 and R3 shifts a new (still 
unspecified) bit into its msb at each clock cycle, and thus we can make sure that the 
computed output bit has the desired value. Note that about half the time only one new 
bit is shifted (and then its choice is forced), and about half the time two new bits are 
shifted (and then we can choose them in two possible ways). We can keep this 
process alive without time consuming trial and error as long as the clock control taps 
contain only known bits whereas the output taps contain at least one unknown bit. 
A5/1 makes this very easy, by using a single clocking tap and placing it in the middle 
of each register: We can place in R2 and R3 11 specified bits to the right of the clock 
control tap, and 11-12 unspecified bits to the right of the output tap. Since each 
register moves only 3/4 of the time, we can keep this process alive for about 16 clock 
cycles, as desired. 

-- This process generates only special states, and cannot miss any special state (if we 
start the process with its partial specification, we cannot get into an early 
contradiction). We can similarly generate any number c < 248 of randomly chosen 
special states in time proportional to c. As explained later in the paper, this can make 
the preprocessing faster, at the expense of other parameters in our attack. 
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5.2 Efficient Disk Probing 

To leave room for a sufficiently long identifying prefix of 35 bits after the 16-bit alpha, we allow 
it to start only at bit positions 1 to 177 in each one of the given frames (i.e., at a distance of 101 to 
277 from the initial state). The expected number of occurrences of alpha in the data produced by 
A5/1 during a two minute conversation is thus 2-16 * 177 * 120 * 1000/4.6 approx = 71. This is 
the expected number of times b we access the hard disk. Since each random access takes about 6 
milliseconds, the total disk access time becomes negligible (about 0.4 seconds). 

5.3 Efficient Disk Storage 

The data items we store on the disk are (prefix, state) pairs. The state of A5/1 contains 64 bits, but 
we keep only special states and thus we can encode them efficiently with shorter 48 bit names, by 
specifying the 41 bits of the partial state and the approx = 7 choice bits in the sampling procedure. 
We can further reduce the state to less than 40 bits (5 bytes) by leaving some of the 48 bits 
unspecified. This saves a considerable fraction of the disk space prepared during preprocessing, 
and the only penalty is that we have to try a small number of candidate states instead of one 
candidate state for each one of the 71 relevant frames. Since this part is so fast, even in its slowed 
down version it takes less than a second. 

The output prefix produced from each special state is nominally of length 16+35=51 bits. 
However, the first 16 bits are always the constant alpha, and the next 35 bits are stored in sorted 
order on the disk. We can thus store the full value of these 35 bits only once per sector, and 
encode on the disk only their small increments (with a default value of 1). Other possible 
implementations are to use the top parts of the prefixes as direct sector addresses or as file names. 
With these optimizations, we can store each one of the sorted (prefix, state) pairs in just 5 bytes. 
The largest commercially available PC hard disks (such as  IBM Ultrastar 72 ZX or Seagate 
Cheetah 73) have 73 gigabytes. By using two such disks, we can store 146 * 230 =5 approx = 235 
pairs during the preprocessing stage, and characterize each one of them by the (usually unique) 
35-bit output prefix which follows alpha. 

5.4 Efficient Tree Exploration 

The forward state-transition function of A5/1 is deterministic, but in the reverse direction we have 
to consider four possible predecessors. About 3/8 of the states have no predecessors, 13/32 of the 
states have one predecessor, 3/32 of the states have two predecessors, 3/32 of the states have three 
predecessors, and 1/32 of the states have four predecessors. 

Since the average number of predecessors is 1, Golic assumed that a good statistical model for the 
generated trees of predecessors is the critical branching process (see [3]). We were surprised to 
discover that in the case of A5/1, there was a very significant difference between the predictions 
of this model and our experimental data. For example, the theory predicted that only 2% of the 
states would have some predecessor at depth 100, whereas in a large sample of 100,000,000 trees 
we generated from random A5/1 states the percentage was close to 15%. Another major difference 
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was found in the tail distributions of the number of sons at depth 100: Theory predicted that in our 
sample we should see some cases with close to 1000 sons, whereas in our sample we never saw 
trees with more than 120 sons at depth 100. 

5.5 The Biased Birthday Attack. 

To analyse the performance of our biased birthday attack, we introduce the following notation: 

Definition 1 A state s is coloured red, if the sequence of output bits produced from state s starts 
with alpha (i.e., it is a special state). The subspace of all the red states is denoted by R. 

Definition 2 A state is coloured green, if the sequence of output bits produced from state s 
contains an occurrence of alpha which starts somewhere between bit positions 101 and 277. The 
subspace of all the green states is denoted by G. 

The red states are the states that we keep in the disk, look for in the data, and try to collide by 
comparing their pre xes. The green states are all the states that could serve as initial states in 
frames that contain alpha. Non-green initial states are of no interest to us, since we discard the 
frames they generate from the actual data. 

The size of R is approximately 248, since there are 264 possible states, and the probability that 
alpha occurs right at the beginning of the output sequence is 2-16. Since the redness of a state is 
not directly related to its separate coordinates i, j, k in the triplet space, the red states can be 
viewed as randomly and sparsely located in this representation. The size of G is approximately 
177 * 248 (which is still a small fraction of the state space) since alpha has 177 opportunities to 
occur along the output sequence. 

Since a short path of length 277 in the output sequence is very unlikely to contain two occurrences 
of alpha, the relationship between green and red states is essentially many to one: The set of all 
the relevant states we consider can be viewed as a collection of disjoint trees of various sizes, 
where each tree has a red state as its root and a "belt" of green states at levels 101 to 277 below it 
(see Figure 4). The weight W (s) of a tree whose root is the red state s is defined as the number of 
green states in its belt, and s is called k-heavy if W (s) > k. 

The crucial observation which makes our biased birthday attack efficient is that in A5/1 there is a 
huge variance in the weights of the various red states. We ran the tree exploration algorithm on 
100,000,000 random states and computed their weights. We found out that the weight of about 
85% of the states was zero, because their trees died out before reaching depth 100. Other weights 
ranged all the way from 1 to more than 26,000. 

The leftmost graph of Figure 5 describes for each x which is a multiple of 100 the value y which is 
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the total weight of all the trees whose weights were between x and x + 100. The total area under 
the graph to the right of x = k represents the total number of green states in all the k-heavy trees in 
our sample. 

The initial mixing of the key and frame number, which ignores the usual clock control and ips the 
least signi cant bits of the registers about half the time before shifting them, can be viewed as 
random jumps with uniform probability distribution into new initial states: even a pair of frame 
counters with Hamming distance 1 can lead to far away initial states in the triplet space. When we 
restrict our attention to the frames that contain alpha, we get a uniform probability distribution 
over the green states, since only green states can serve as initial states in such frames. 

The red states, on the other hand, are not encountered with uniform probability distribution in the 
actual data. For example, a red state whose tree has no green belt will never be seen in the data. 
On the other hand, a red state with a huge green belt has a huge number of chances to be reached 
when the green initial state is chosen with uniform probability distribution. In fact the probability 
of encountering a particular red state s in a particular frame which is known to contain alpha is 
the ratio of its weight W (s) and the total number of green states 177 * 248 , and the probability of 
encountering it in one of the 71 relevant frames is PB (s) = 71 * W (s)=(177 * 248). 

Since PB (s) has a huge variance, we can maximize the expected number of collisions Sigmas PA 

(s) * PB (s) by choosing red points for the hard disk not with uniform probability distribution, but 

with a biased probability PA (s) which maximizes the correlation between these distributions, 

while minimizing the expected size of A. The best way to do this is to keep on the disk only the 
heaviest trees. In other words, we choose a threshold number k, and define PA (s) = 0 if W (s) < k, 

and PA (s) = 1 if W (s) > k. We can now easily compute the expected number of collisions by the 

formula: 

 

which is just the number of red states we keep on the disk, times the average weight of their trees, 
times 71/(177 * 248). 

In our actual attack, we keep 235 red states on the disk. This is a 2-13 fraction of the 248 red states. 
With such a tiny fraction, we can choose particularly heavy trees with an average weight of 
12,500. The expected number of colliding red states in the disk and the actual data is 235 *12,500 
* 71/(177 * 248) approx = 0.61. This expected value makes it quite likely that a collision will 
actually exist.5 

____________________ 

5 Note that in time memory tradeoff attacks, it becomes increasingly expensive to push this probability 
towards 1, since the only way to guarantee success is to memorize the whole state space. 

The intuition behind the biased time memory tradeoff attack is very simple. We store red states, 
but what we really want to collide are the green states in their belts (which are accessible from the 
red roots by an easy computation). The 71 green states in the actual data are uniformly distributed, 
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and thus we want to cover about 1% of the green area under the curve in the right side of Figure 5. 
Standard time memory tradeoff attacks store random red states, but each stored state increases the 
coverage by just 177 green states on average. With our optimized choice in the preprocessing 
stage, each stored state increases the coverage by 12,500 green states on average, which improves 
the efficiency of the attack by almost two orders of magnitude. 

5.6 Efficient Determination of Initial States 

One possible disadvantage of storing heavy trees is that once we find a collision, we have to try a 
large number of candidate states in the green belt of the colliding red state. Since each green state 
is only partially specified in our compact 5-byte representation, the total number of candidate 
green states can be hundreds of thousands, and the real time part of the attack can be relatively 
slow. 

However, this simple estimate is misleading. The parasitic red states obtained from the partial 
specification can be quickly discarded by evaluating their outputs beyond the guaranteed 
occurrence of alpha and comparing it to the bits in the given frame. In addition, we know the 
exact location of alpha in this frame, and thus we know the exact depth of the initial state we are 
interested in within the green belt. As a result, we have to try only about 70 states in a cut through 
the green belt, and not the 12,500 states in the full belt. 

5.7 Reducing the Preprocessing Time of the Biased Birthday Attack 

The 248 complexity of the preprocessing stage of this attack can make it too time consuming for a 
small network of PC's. In this section we show how to reduce this complexity by any factor of up 
to 1000, by slightly increasing either the space complexity or the length of the attacked 
conversation. 

The efficient sampling procedure makes it possible to generate any number c < 248 of random red 
states in time proportional to c. To store the same number of states in the disk, we have to choose 
a larger fraction of the tested trees, which have a lower average weight, and thus a less efficient 
coverage of the green states. Table 2 describes the average weight of the heaviest trees for various 
fractions of the red states, which was experimentally derived from our sample of 100,000,000 
A5/1 trees. This table can be used to choose the appropriate value of k in the definition the k-
heavy trees for various choices of c. The implied tradeoff is very favorable: If we increase the 
fraction from 2-13 to 2-7, we can reduce the preprocessing time by a factor of 64 (from 248 to 242), 
and compensate by either doubling the length of attacked conversation from 2 minutes to 4 
minutes or doubling the number of hard disks from 2 to 4. The extreme point in this tradeoff is to 
store in the disk all the sampled red states with nonzero weights (the other sampled red states are 
just a waste of space, since they will never be seen in the actual data). In A5/1 about 15% of the 
red states have nonzero weights, and thus we have to sample about 238 red states in the 
preprocessing stage in order to find the 15% among them (about 235 states) which we want to 
store, with an average tree weight of 1180. To keep the same probability of success, we have to 
attack conversations which last about half an hour. 

Average Weights

2-4 2432 2-5 3624 2-6 4719 2-7 5813
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Table 2. The average weight of the heaviest trees for various functions of R. 

A further reduction in the complexity of the preprocessing stage can be obtained by the early abort 
strategy: Explore each red state to a shallow depth, and continue to explore only the most 
promising candidates which have a large number of sons at that depth. This heuristic does not 
guarantee the existence of a large belt, but there is a clear correlation between these events. 

To check whether the efficiency of our biased birthday attack depends on the details of the stream 
cipher, we ran several experiments with modified variants of A5/1. In particular, we concentrated 
on the effect of the clock control rule, which determines the noninvertibility of the model. For 
example, we hashed the full state of the three registers and used the result to choose among the 
four possible majority-like movements (+1,+1,+1), (+1,+1,0), (+1,0,+1), (0,+1,+1) in the triplet 
space. The results were very different from the real majority rule. We then replaced the majority 
rule by a minority rule (if all the clocking taps agree, all the registers move, otherwise only the 
minority register moves). The results of this minority rule were very similar to the majority-like 
hashing case, and very different from the real majority case (see Figure 5). It turns out that in this 
sense A5/1 is actually stronger than its modified versions, but we do not currently understand the 
reason for this strikingly different behavior. We believe that the type of data in Table 2, which we 
call the tail coverage of the cryptosystem, can serve as a new security measure for stream ciphers 
with noninvertible state transition functions. 

2-8 6910 2-9 7991 2-10 9181 2-11 10277

2-12 11369 2-13 12456 2-14 13471 2-15 14581

2-16 15686 2-17 16839 2-18 17925 2-19 19012

2-20 20152 2-21 21227 2-22 22209 2-23 23515

2-24 24597 2-25 25690 2-26 26234   



the right compares the weight distributions of several clock-control functions.

5.8 Extracting the Key From a Single Red State 

The biased birthday attack was based on a direct collision between a state in the disk and a state in 
the data, and required approx = 71 red states from a relatively long (approx = 2 minute) prefix of 
the conversation. In the random subgraph attack we use indirect collisions, which make it possible 
to find the key with reasonable probability from the very first red state we encounter in the data, 
even though it is unlikely to be stored in the disk. This makes it possible to attack A5/1 with less 
than two seconds of available data. The actual attack requires several minutes instead of one 
second, but this is still a real time attack on normal telephone conversations. 

The attack is based on Hellman's original time-memory tradeoff for block ciphers, described in 
[4]. Let E be an arbitrary block cipher, and let P be some fixed plaintext. Define the function f 
from keys K to ciphertexts C by f(K) = EK (P ). Assuming that all the plaintexts, ciphertexts and 

keys have the same binary size, we can consider f as a random function (which is not necessarily 
one-to-one) over a common space U . This function is easy to evaluate and to iterate but difficult 
to invert, since computing the key K from the ciphertext f(K) = EK (P ) is essentially the problem 

of chosen message cryptanalysis. 

Hellman's idea was to perform a precomputation in which we choose a large number m of random 
start points in U , and iterate f on each one of them t times. We store the m (start point, end point) 
pairs on a large disk, sorted into increasing endpoint order. If we are given f(K) for some unknown 
K which is located somewhere along one of the covered paths, we can recover K by repeatedly 
applying f in the easy forward direction until we hit a stored end point, jump to its corresponding 
start point, and continue to apply f from there. The last point before we hit f(K) again is likely to 
be the key K which corresponds to the given ciphertext f(K). 
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Since it is difficult to cover a random graph with random paths in an efficient way, Hellman 
proposed a rerandomization technique which creates multiple variants of f (e.g., by permuting the 
order of the output bits of f ). We use t variants fi , and iterate each one of them t times on m 

random start points to get m corresponding end points. If the parameters m and t satisfy mt2 = |U|, 
then each state is likely to be covered by one of the variants of f. Since we have to handle each 
variant separately (both in the preprocessing and in the actual attack), the total memory becomes 
M = mt and the total running time becomes T = t2 , where M and T can be anywhere along the 
tradeoff curve M square root T = |U|. In particular, Hellman suggests using M = T = |U|2/3. 

A straightforward application of this M square root T = |U| tradeoff to the |U| = 264 states of A5/1 
with the maximal memory M = 236 requires time T = 256, which is much worse than previously 
known attacks. The basic idea of the new random subgraph attack is to apply the time-memory 
tradeoff to the subspace R of 248 red states, which is made possible by the fact that it can be 
efficiently sampled. Since T occurs in the tradeoff formula M square root T = |U| with a square 
root, reducing the size of the graph by a modest 216 (from |U| = 264 to |R| = 248 ) and using the 
same memory (M = 236), reduces the time by a huge factor of 232 (from T = 256 to just T = 224 ). 
This number of steps can be carried out in several minutes on a fast PC. 

What is left is to design a random function f over R whose output-permuted variants are easy to 
evaluate, and for which the inversion of any variant yields the desired key. Each state has a "full 
name" of 64 bits which describes the contents of its three registers. However, our efficient 
sampling technique enables us to give each red state a "short name" of 48 bits (which consists of 
the partial contents of the registers and the random choices made during the sampling process), 
and to quickly translate short names to full names. In addition, red states are characterized (almost 
uniquely) by their "output names" defined as the 48 bits which occur after alpha in their output 
sequences. We can now define the desired function f over 48-bit strings as the mapping from short 
names to output names of red states: Given a 48-bit short name x, we expand it to the full name of 
a red state, clock this state 64 times, delete the initial 16-bit alpha, and define f(x) as the 
remaining 48 output bits. The computation of f(x) from x can be efficiently done by using the 
previously described precomputed tables, but the computation of x from f(x) is exactly the 
problem of computing the (short) name of an unknown red state from the 48 output bits it 
produces after alpha. When we consider some output-permuted variant fi of f, we obviously have 

to apply the same permutation to the given output sequence before we try to invert fi over it. 

The recommended preprocessing stage stores 212 tables on the hard disk. Each table is defined by 
iterating one of the variants fi 2

12 times on 224 randomly chosen 48-bit strings. Each table 

contains 224 (start point, end point) pairs, but implicitly covers about 236 intermediate states. The 
collection of all the 212 tables requires 236 disk space, but implicitly covers about 248 red states. 

The simplest implementation of the actual attack iterates each one of the 212 variants of f 
separately 212 times on appropriately permuted versions of the single red state we expect to find 
in the 2 seconds of data. After each step we have to check whether the result is recorded as an end 
point in the corresponding table, and thus we need T = 224 probes to random disk locations. At 6 
ms per probe, this requires more than a day. However, we can again use Rivest's idea of special 
points: We say that a red state is bright if the first 28 bits of its output sequence contain the 16-bit 
alpha extended by 12 additional zero bits. During preprocessing, we pick a random red start point, 
and use fi to quickly jump from one red state to another. After approximately 212 jumps, we 
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expect to encounter another bright red state, at which we stop and store the pair of (start point, end 
point) in the hard disk. In fact, each end point consists of a 28 bit fixed prefix followed by 36 
additional bits. As explained in the previous attack, we do not have to store either the prefix 
(which is predictable) or the suffix (which is used as an index) on the hard disk, and thus we need 
only half the expected storage. We can further reduce the required storage by using the fact that 
the bright red states have even shorter short names than red states (36 instead of 48 bits), and thus 
we can save 25% of the space by using bright red instead of red start points in the table.6 During 
the actual attack, we find the first red state in the data, iterate each one of the 212 variants of f over 
it until we encounter a bright red state, and only then search this state among the pairs  stored in 
the disk. We thus have to probe the disk only once in each one of the t = 212 tables, and the total 
probing time is reduced to 24 seconds. 

____________________ 

6 Note that we do not know how to jump in a direct way from one bright red state to another, since we 
do not know how to sample them in an eÆcient way. We have to try about 212 red states in order to 
find one bright red start point, but the total time needed to find the 236 bright red start points in all the 
tables is less than the 248 complexity of the path evaluations during the preprocessing stage. 

There are many additional improvement ideas and implementation details which will be described 
in the final version of this paper. 
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